Method for prediction of cavitation erosion performance in hydro-turbines based on the two-parameter phenomenological model

Autor

  • Bolesław Grzegorz Gireń
  • Marzena Noińska-Macińska

DOI:

https://doi.org/10.24426/eco-energetics.v1i0.98

Słowa kluczowe:

cavitation erosion, materials performance, performance evaluation, random process modelling, wear

Abstrakt

Two-parameter phenomenological model for quantification of the cavitation damage process in its initial — incubation stage inspired by Förster energy migration theory is presented in the paper. The model built was supplemented with functional relationships between calculation parameters and strength parameters of the materials derived for chosen cavitation loading conditions. Experiments at the rotating disk set-up have been carried out in order to obtain necessary experimental data. The values of calculation parameters have been determined by adjusting the theoretical erosion curve to experimental one. Preliminary experimental verification of the model soundness consisted in comparing theoretical to experimental results obtained from both the ICET program and the experimental investigations of the cavitation erosion at Banki-Michel turbine blades. Reliability as well as the sources of inaccuracy and uncertainties were also discussed. The far-reaching aim of the work is to create the calculation tool for prediction of cavitation erosion performance in hydro-turbines during their operating cycle.

Bibliografia

Antonini, A., Giadrossi, A. (1981). Turbine behavior under cavitation conditions. Int. Water Power & Dam Construction, 33, 25–28.

Bedkowski, W., Gasiak, G., Lachowicz, C., Lichtarowicz, A., Lagoda T., Macha E. (1999). Relations between cavitation erosion resistance of materials and their fatigue strength under random loading. Wear, 230, 201–209.

Bellet, L. et al. (1997). Cavitation erosion prediction on Francis turbines. Int. Journal on Hydropower and Dams, 4, 56–58.

Berchiche, N., Franc, J.-P., Michel, J.-M. (2000). A model for the prediction of the erosion of ductile materials by cavitation. Comptes Rendus del Academie des Sciences, 328, Ser. II, B, 305–310.

Bojarski, C., Grabowska, J., Kułak, L., Kuśba, J. (1991). Investigations of the Excitation Energy Transport Mechanism in Donor-Acceptor Systems. Journal of Fluorescence, 1, 183–191.

Choi, J-K., Jayaprakash, A., Chahine, G.L. (2012). Scaling of cavitation erosion progression with cavitation intensity and cavitation source. Wear, 278–279, 53–61.

Förster, T. (1949). Experimentelle und theoretische Untersuchung des zwischenmolecularen Uebergangs von Electronenanregungsenergie. Z. Naturforsch., 4A, 321–327.

Fortes-Patella, R., Reboud, J.L. (1998). The new approach to evaluate the cavitation erosion power. Journal of Fluid Engineering — Transactions of ASME, 120, 335–344

Gireń, B.G. (2004). Material Proprieties Essential for Cavitation Erosion of Laser Produced Surface Alloys. Journal of Materials Science, 39, 295–297.

Gireń, B.G., Frączak, J. (2016). Phenomenological prediction tool for cavitation erosion fed with the International Cavitation Erosion Test results. Wear, 364–365, 1–9.

Gireń, B.G., Noińska-Macińska, M. (2014). Cavitation erosion of the blades in Banki-Michel turbine. Observations and some aspects of the process simulation. Eksploatacja i Niezawodność — Maintenance and Reliability, 16, 526–532.

Gireń, B.G., Noińska-Macińska, M. (2016). Cavitation erosion regimes — an attempt of deriving classification predictor. Transactions of the Institute of Fluid Flow Machinery, 132, 1–13.

Gireń, B.G., Steller, J. (2009). Random multistage input and energy partition approach to the description of cavitation erosion process. Stochastic Environmental Research and Risk Assessment, 23, 263–273.

Gireń, B.G., Steller, J. (2014). Investigations of the cavitation resistance of selected materials by the rotating disk method. The Szewalski Institute of Fluid Flow Machinery Polish Academy of Sciences Rep. 303/2014.

Gireń, B.G., Szkodo, M., Steller, J. (1999). The Influence of Residual Stresses on Cavitation Resistance of Metals. Wear, 233–235, 86–92.

Gireń, B.G., Wasilewski, J., Janicki, W. (2012). Badania weryfikujące poprawność symulacji procesu kawitacyjnego niszczenia łopatek turbiny Banki w rzeczywistych warunkach pracy hydrozespołu, część I. Institute of Fluid Flow Machinery Reports, Nr arch. 593/2012.

Gireń, B.G., Wasilewski, J., Janicki, W. (2013).Badania weryfikujące poprawność symulacji procesu kawitacyjnego niszczenia łopatek turbiny Banki w rzeczywistych warunkach pracy hydrozespołu, część II. Institute of Fluid Flow Machinery Reports, Nr arch. 20/2013.

Hammit, F.G., De, M.K. (1979). Cavitation Damage Prediction. Wear, 52, 243–262.

Heymann, F.J. (1967). On the Time Dependence of the Rate of Erosion Due to Impingement or Cavitation, Erosion by Cavitation or Impingement. ASTM Special Technical Pub., 408, 70–110.

Hickling, R., Plesset, M.S. (1964). Collaps and rebound of a spherical bubble in water. Physics Fluids, 7, 7–14.

International Cavitation Erosion Test, Experimental rigs. Test coordinator: J. Steller. Received from: http://www.imp.gda.pl/icet/.

Karimi, A., Leo, W.R. (1987). Phenomenological Model for Cavitation Erosion Rate Computation. Materials Science and Engineering, 95, 1–14.

Kocańda, S., Szala, J. (1997). Fundamentals of fatigue computations. Warszawa: PWN.

Morozov, V.P. (1969). Cavitation Noise as a Train of Sound Pulses Generated at Random Times. Sov. Phys. Acoust., 14, 361–365.

Pereira, F., Avellan, F., Dupont, P. (1998). Prediction of cavitation erosion — an energy approach. Journal of Fluid Engineering, Transactions of ASME, 120, 719–727.

Rao, P.V., Buckley, D.H. (1984). Cavitation Erosion Size Scale Effects. Wear, 96, 239–253.

Reymann, Z. (1993). Turbiny Banki-Michella konstrukcji IMP PAN. Doświadczenia z badań modeli i prototypów. Zeszyty Naukowe Instytutu Maszyn Przepływowych PAN, 400/1363.

Richman, R.H., McNaughton, W.P. (1990). Correlation of cavitation erosion behaviour with mechanical properties of metals. Wear, 140, 63–82.

Robinson, P.B., Blake, J.R., Kodama, I., Shima, A., Tomita, Y. (2001). Interaction of cavitation bubbles with a free surface. Journal of Applied Physics, 89, 8225–8237.

Steller, J. (1999). International Cavitation Erosion Test and quantitative assessment of material resistance to cavitation. Wear, 233–235, 51–64.

Stinebring, D.R., Arndt, R.E.A., Holl, J.W. (1977). Scaling of Cavitation Damage. Journal of Hydronautics, 11, 67–73.

Thiruvengadam, A., Waring, S. (1966). Mechanical Properties of Metals and their Cavitation Damage Resistance. Journal of Ship Research, 10, 1–9.

Zhang, Y.J., Li, S.C., Hammitt, F.G. (1989). Statistical investigation of bubble collapse and cavitation erosion effect. Wear, 133 (2), 257–265.

Opublikowane

2019-04-24

Jak cytować

Gireń, B. G., & Noińska-Macińska, M. (2019). Method for prediction of cavitation erosion performance in hydro-turbines based on the two-parameter phenomenological model. Eco-Energetics: Technologies, Environment, Law and Economy, 1, 21–32. https://doi.org/10.24426/eco-energetics.v1i0.98

Numer

Dział

Articles