New results from microalgae production and techniques

Autor

  • Jochen Grossmann GICON, GmbH, Tiergartenstraße 48, 01219 Dresden, Germany
  • Stefan Matthes GICON, GmbH, Tiergartenstraße 48, 01219 Dresden, Germany
  • Jarosław Karwacki Physical Aspects of Ecoenergy, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences
  • Roman Kwidziński Physical Aspects of Ecoenergy, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences
  • Adam Tomaszewski Physical Aspects of Ecoenergy, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences
  • Marcin Lackowski Physical Aspects of Ecoenergy, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences
  • Adam Cenian Physical Aspects of Ecoenergy, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences

DOI:

https://doi.org/10.24426/eco-energetics.v2i2.109

Słowa kluczowe:

microalgae, production, photobioreactor, silicone double-wall tubing, control system, phase-changing materials.

Abstrakt

The paper deals with new technical solutions for outdoor cultivation systems for microalgae production. Various types of algae cultivation systems and materials applied for reactors are described. The characteristics and performance of a novel closed photobioreactor system with “Christmas tree” design (brand name: GICON-PBR) consisting of a silicone double-wall tubing-system, developed in collaboration between the companies GICON and Wacker Chemical corporation, are discussed. Special attention is paid to the issue of temperature control for closed cultivation systems. The performance of the chilling system stabilizing the temperature of algae cultivation, which applies a thermal energy storage filled with Phase Change Material (PCM). Two kinds of the systems are considered: free cooling and with compressor units. The lumped-model equations were developed to analyze heat-transfer dynamics inside the installation and some results are presented here. The model equations describe energy balances for the chiller, PCM thermal storage and heat receiver. Influence of the heat transfer, fluid-flow-rate control, heat capacity of the system components as well as heat losses to ambient were taken into account. The results of PCM storage application are compared with reference water-filled buffer-tank. The study shows a great potential of PCM storage unit to stabilize the temperature of the algae cultivation system.

Bibliografia

Bramson, M.A. (1968). Infrared Radiation, a Handbook for Applications. New York: Springer US.

Karwacki, J., Kwidziński, R., Tomaszewski, A., Großman, J., Cenian A., Lackowski, M. (2017). Usage of PCM thermal energy storage in the temperature stabilization system of bioreactor for algae cultivation. Proc. XLIX Dni Chłodnictwa, Konferencja Naukowo-Techniczna, Poznań, 107–125.

Pudlik, W. (2012). Wymiana i wymienniki ciepła. Gdańsk: Politechnika Gdańska.

Ahmed, A.B.A., Adel, M., Karimi, P., Peidayesh, M. (2014). Pharmaceutical, Cosmeceutical, and Traditional Applications of Marine Carbohydrates. In S.-K. Kim (ed.), Advances in Food and Nutrition Research (pp. 197–220). London: Academic Press.

Benemann, J. (2013). Microalgae for Biofuels and Animal Feeds. Energies, 6, 5869–5886.

Borowitzka, M.A. (2013). High-value products from microalgae — their development and commercialisation. J Appl Phycol, 25, 743–756.

Cameron Coates, R., Trentacoste, E., Gerwick, W.H. (2013). Bioactive and Novel Chemicals from Microalgae. In A. Richmond, Q. Hu (eds.), Handbook of Microalgal Culture (pp. 504–531). John Wiley & Sons, Ltd.

Carvalho, J.C.M., Matsudo, M.C., Bezerra, R.P., Ferreira-Camargo, L.S., Sato, S. (2014). Microalgae Bioreactors. In R. Bajpai, A. Prokop, M. Zappi (eds.), Algal Biorefineries (pp. 83–126). Springer Netherlands.

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.

Critten, D.L., Bailey, B.J. (2002). A review of greenhouse engineering developments during the 1990s. Agricultural and Forest Meteorology, 112, 1–22.

Darzins, A., Pienkos, P., Edye, L. (2010). Current Status and Potential for Algal Biofuels Production. Golden.

Enzing, C., Ploeg, M., Barbosa, M., Sijtsma, L., Vigani, M., Parisi, C., Cerezo, E.R. (2014). Microalgae-based products for the food and feed sector: an outlook for Europe. Luxembourg: Publications Office of the European Union.

Geier, S., Schmitz, H., Göschel, U., Eyerer, P., Ostrowicki, A., Woicke, N., Ulrich, C., Lutz, W., Eschl, J., Rüb, G., et al. (2012). Synthetische Kunststoffe. In P. Elsner, P. Eyerer, T. Hirth (eds.), Kunststoffe (pp. 115–1201). Berlin-Heidelberg: Springer Berlin Heidelberg.

Guedes, A.C., Amaro, H.M., Malcata, F.X. (2011). Microalgae as Sources of Carotenoids. Marine Drugs, 9, 625–644.

Jacobi, A., Lehr, F., Posten, C., Rosello, R., Steinweg, C. (2011). Photobioreaktor. DE102010021154 A1, filed May 21 2010, and issued November 24.

Kittas, C., Baille, A. (1998). Determination of the Spectral Properties of Several Greenhouse Cover Materials and Evaluation of Specific Parameters Related to Plant Response. Journal of Agricultural Engineering Research, 71, 193–202.

Koller, M. (2015). Design of Closed Photobioreactors for Algal Cultivation. In A. Prokop, R.K. Bajpai, M.E. Zappi (eds.), Algal Biorefineries (pp. 133–186). Cham: Springer International Publishing.

Kübler, M., Müller, A.K. (2014). Kunststoffe. In K.-H. Grote, J. Feldhusen (eds.), Dubbel (pp. 281–296). Springer Berlin Heidelberg.

Laurens, L.M.L. (2017). State of Technology Review — Algae Bioenergy. Golden: IEA Bioenergy.

Li, J., Zhu, D., Niu, J., Shen, S., Wang, G. (2011). An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnology Advances, 29, 568–574.

Matthes, S., Matschke, M., Cotta, F., Grossmann, J., Griehl, C. (2015a). Reliable production of microalgae biomass using a novel microalgae platform. J Appl Phycol, 27, 1755–1762.

Matthes, S., Ecke, M., Matschke, M., Kugler, N., Cotta, F., Grossmann, J., Griehl, C. (2015b). Ganzjährige und stabile Produktion von Mikroalgenbiomasse im Tannenbaum-Photobioreaktor in Mitteldeutschland. 8. Bundesalgenstammtisch der DECHEMA. München: Garching.

Milledge, J.J. (2011). Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol, 10, 31–41.

Milledge, J.J. (2012). Microalgae — commercial potential for fuel, food and feed. Food Science & Technology, 26, 28–30.

Mueller-Rees, C., Pfaller, R., Walter, C., Cotta, F. (2011). Tubular photobioreactor. WO2011048108 A2, filed April 2011, and issued April 28.

Olaizola, M. (2000). Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. Journal of Applied Phycology, 12, 499–506.

Panis, G., Carreon, J.R. (2016). Commercial astaxanthin production derived by green alga Haematococcus pluvialis: A microalgae process model and a techno-economic assessment all through production line. Algal Research, 18, 175–190.

Pearson, S., Wheldon, A.E., Hadley, P. (1995). Radiation Transmission and Fluorescence of Nine Greenhouse Cladding Materials. Journal of Agricultural Engineering Research, 62, 61–69.

Posten, C. (2018). Fotobioreaktoren. In H. Chmiel, and D. Weuster-Botz (eds.), Bioprozesstechnik (pp. 188–196). Berlin-Heidelberg: Springer Berlin Heidelberg.

Posten, C., Wilhelm, C. (2016). Aquatische Biomasse. In M. Kaltschmitt, H. Hartmann, H. Hofbauer (eds.) Energie aus Biomasse (pp. 249–272). Berlin-Heidelberg: Springer Berlin Heidelberg.

Pulz, O., Broneske, J., Waldeck, P. (2013). IGV GmbH Experience Report, Industrial Production of Microalgae Under Controlled Conditions: Innovative Prospects. In A. Richmond, Qiang Hu (eds.), Handbook of Microalgal Culture (pp. 445–460). John Wiley & Sons, Ltd.

Pulz, O. (2001). Photobioreactors: production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology, 57, 287–293.

Raes, E.J., Isdepsky, A., Muylaert, K., Borowitzka, M.A., Moheimani, N.R. (2014). Comparison of growth of Tetraselmis in a tubular photobioreactor (Biocoil) and a raceway pond. J Appl Phycol, 26, 247–255.

Robinson, L.F., Morrison, A.W. Bamforth, M.R. (1988). Improvements relating to biosynthesis. EP 0261872 A2, issued March 30.

Rosello Sastre, R., Posten, C. (2010). Die vielfältige Anwendung von Mikroalgen als nachwachsende Rohstoffe. Chemie Ingenieur Technik, 82, 1925–1939.

Saint-Gobain Glass Deutschland GmbH (2015). Hochtransparente Weißgläser in Forschungsgewächshäusern optimieren das Pflanzenwachstum — Der Sonne entgegen. Stolberg: Saint-Gobain Glass Deutschland GmbH.

Sierra, E., Acién, F.G., Fernández, J.M., García, J.L., González, C., Molina, E. (2008). Characterization of a flat plate photobioreactor for the production of microalgae. Chemical Engineering Journal, 138, 136–147.

Silva, T.L. da, Reis, A. (2015). Scale-up Problems for the Large Scale Production of Algae. In D. Das (ed.), Algal Biorefinery: An Integrated Approach (pp. 125–149). Springer International Publishing.

Slocombe, S. Benemann, J. (eds.). (2016). Microalgal Production for Biomass and High-Value Products. CRC Press.

Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101, 87–96.

Ting, K.C., Giacomelli, G.A. (1987). Solar photosynthetically active radiation transmission through greenhouse glazings. Energy in Agriculture, 6, 121–132.

Torzillo, G., Zittelli, G.C. (2015). Tubular Photobioreactors. In A. Prokop, R.K. Bajpai, M.E. Zappi (eds.), Algal Biorefineries (pp. 187–212). Springer International Publishing.

Tredici, M.R. (2004). Mass Production of Microalgae: Photobioreactors. In A. Richmond (ed.), Handbook of Microalgal Culture (pp. 178–214). Oxford: Blackwell Publishing Ltd.

Verdelho Viera, V. (2015). Overview of production of value added products, Markets and producers in the EU. München: Pullach.

Voort, M.P.J. van der, Vulsteke, E., Visser, C.L.M. de. (2015). Macro-economics of algae products: Output WP2A7.02. Swansea: EnAlgae Swansea University.

Watanabe, Y., de la Noüe, J., Hall, D.O. (1995). Photosynthetic performance of a helical tubular photobioreactor incorporating the cyanobacterium spirulina platensis. Biotechnol. Bioeng, 47, 261–269.

Weißbach, W. (2012). Werkstoffkunde. Wiesbaden: Vieweg+Teubner Verlag.

Zittelli, G.C., Rodolfi, L., Bassi, N., Biondi, N., Tredici, M.R. (2013). Photobioreactors for Microalgal Biofuel Production. In M.A. Borowitzka, N.R. Moheimani (eds.), Algae for Biofuels and Energy (pp. 115–131). Springer Netherlands.

Opublikowane

2019-06-26

Jak cytować

Grossmann, J., Matthes, S., Karwacki, J., Kwidziński, R., Tomaszewski, A., Lackowski, M., & Cenian, A. (2019). New results from microalgae production and techniques. Eco-Energetics: Technologies, Environment, Law and Economy, 2, 47–62. https://doi.org/10.24426/eco-energetics.v2i2.109

Numer

Dział

Articles