Showcases of industrial symbiosis related to anaerobic digestion at the project UBIS

  • Kai Schmedemann
  • Jan Sprafke
  • Michael Nelles
  • Andrea Schüch
Słowa kluczowe: industrial symbioses, ecosystem, greenhouse gas emissions, by-products, municipal waste.

Abstrakt

Industrial symbioses are intended to minimize greenhouse gas emissions, conserve resources and avoid waste through closed material cycles. The waste and residual materials of one actor become the resource of the other. The better use of raw materials can lead to cost and competitive advantages for the involved partners. The UBIS project investigates the realization of such industrial symbioses. Two showcases from the project region with focus on anaerobic digestion illustrate the effectiveness of industrial symbioses.

Bibliografia

Chertow, M.R. (2000). Industrial Symbiosis: Literature and Taxonomy. Annu. Rev. Energy. Environ., 25(1), 313–337.

Chertow, M.R. (2007). “Uncovering” Industrial Symbiosis. Journal of Industrial Ecology, 11(1), 11–30.

Eyre, J.D. (1963). Industrial Growth in the Suwa Basin, Japan. Geographical Review, 53(4), 487.

Frosch, R.A., Gallopoulos, N.E. (1989). Strategies for Manufacturing. Scientific American, 261(3), 144–153.

Gibbs, D. (2008). Industrial Symbiosis and Eco‐Industrial Development: An Introduction. Geography Compass, 2(4), 1138–1154.

Green, L. (1977). Gas-Turbine Total Energy System for a Cement Plant. In ASME 1977 International Gas Turbine Conference and Products Show. Philadelphia (Pennsylvania, USA): ASME. V001T01A021.

Hewes, A.K., Lyons, D.I. (2008). The Humanistic Side of Eco-Industrial Parks: Champions and the Role of Trust. Regional Studies, 42(10), 1329–1342.

Jacobsen, N.B. (2006). Industrial Symbiosis in Kalundborg, Denmark: A Quantitative Assessment of Economic and Environmental Aspects. Journal of Industrial Ecology, 10(1–2), 239–255.

Mirata, M. (2004). Experiences from early stages of a national industrial symbiosis programme in the UK: Determinants and coordination challenges. Journal of Cleaner Production, 12(8–10), 967–983.

Mirata, M., Emtairah, T. (2005). Industrial symbiosis networks and the contribution to environmental innovation: The case of the Landskrona industrial symbiosis programme. Journal of Cleaner Production, 13(10–11), 993–1002.

Mirata, M., Eklund, M., Gundberg, A. (2017). Industrial symbiosis and biofuels industry: Business value and organisational factors within cases of ethanol and biogas production. Report No. 2017:11, f3 The Swedish Knowledge Centre for Renewable Transportation Fuels. Retrieved from: www.f3centre.se.

Spilhaus, A. (1968). The Experimental City: With components designed as an experimental system, new cities in open land will open up land in old cities. Science (New York, N.Y.), 159(3816), 710–715.

Strebel, H. (2012). Zwischenbetriebliches Stoffstrommanagement. In M. Tschandl, A. Posch (eds.), Integriertes Umweltcontrolling: Von der Stoffstromanalyse zum Bewertungs- und Informationssystem (2nd ed., pp. 85–98). Wiesbaden: Gabler Verlag/Springer Fachmedien Wiesbaden GmbH.

Vattenfall Europe. (2018). New Energy Ecopower GmbH, Abfallentsorgung mit Kraft-Wärme-Kopplung: EBS-HKW. Rostock. Retrieved from: https://blog.vattenfall.de/va-content/uploads/2016/08/Abfall-Entsorgung-EBS-HKW-Rostock.pdf.

Veolia. (2018). Teilstromvergärungsanlage Rostock. Retrieved from: https://www.veolia.de/ teilstromvergaerungsanlage-rostock.

Zuckerfabrik. (2018). Anklam Suiker Unie GmbH & Co. KG. Retrieved from: https://zuckerfabrik-anklam.de/.

Opublikowane
2019-06-26
Jak cytować
Schmedemann, K., Sprafke, J., Nelles, M., & Schüch, A. (2019). Showcases of industrial symbiosis related to anaerobic digestion at the project UBIS. Eco-Energetics: Technologies, Environment, Law and Economy, 2, 123-128. https://doi.org/10.24426/eco-energetics.v2i2.117
Dział
Articles